
1

ArmSwap
(Protocol)

ETH APRIL 2024

2

Table of Contents

Executive Summary 4

Project Context 5

Audit scope 7

Security Rating 9

Intended Smart Contract Behaviours 10

Code Quality 11

Audit Resources 11

Dependencies 11

Severity Definitions 13

Audit Findings 13

Centralisation 32

Conclusion 33

Our Methodology 34

Disclaimers 36

About Hashlock 37

Hashlock Pty Ltd

3

CAUTION

THIS DOCUMENT IS A SECURITY AUDIT REPORT AND MAY CONTAIN

CONFIDENTIAL INFORMATION. THIS INCLUDES IDENTIFIED

VULNERABILITIES AND MALICIOUS CODE WHICH COULD BE USED TO

COMPROMISE THE PROJECT. THIS DOCUMENT SHOULD ONLY BE FOR

INTERNAL USE UNTIL ISSUES ARE RESOLVED. ONCE VULNERABILITIES ARE

REMEDIATED, THIS REPORT CAN BE MADE PUBLIC. THE CONTENT OF THIS

REPORT IS OWNED BY HASHLOCK PTY LTD FOR USE OF THE CLIENT.

Hashlock Pty Ltd

4

Executive Summary

The ArmSwap partnered with Hashlock to conduct a security audit of their

Armswap-token and armswap-evm-contract-main. Hashlock manually and proactively

reviewed the code in order to ensure the project’s team and community that the

deployed contracts were secure.

Project Context

ARMSwap is a decentralised application (DApp) that facilitates cross-chain token swaps

and bridge crypto assets across different blockchains. Users can engage in native-native

swapping, native-ERC20 token swapping, native-WrappedNative Bridging, and

ERC20-ERC20 Swapping.

Project Name: ArmSwap

Compiler Version: ^0.8.19 (ARMswap Token)

Compiler Version: ^0.8.24 (ArmSwap)

Website: https://www.armswap.com/

Logo:

Hashlock Pty Ltd

5

Visualised Context:

Project Name Launch Date

ArmSwap June 2024

Compiler Version Language

v^0.8.24 / ^0.8.19 Solidity

Network Token Ticker

ETHEREUM ARMSP

Iconography:

Hashlock Pty Ltd

6

Project Visuals:

Hashlock Pty Ltd

7

Audit scope

We at Hashlock audited the solidity code within the Armswap-token and

armswap-evm-contract-main, the scope of works included a comprehensive review of

the smart contracts listed below. We tested the smart contracts to check for their

security and efficiency. These tests were undertaken primarily through manual

line-by-line analysis and were supported by software-assisted testing.

Description armswap-evm-contract-main

Platform Ethereum / Solidity

Audit Date April 2024

ArmswapV1Router.sol 4203613109e1c33b860f7cf634300fbf

ArmswapV1ERC20 ba3a536e99c2b1229a41d32d09ed4da0

ArmswapV1ERC20Deployer.sol e1b87a6706b3e84b9ed8b5578f0a4057

RouterConfig.sol e621685c126da0bde1ad20a66deae0b2

ArmCallExecutor.sol 1f89c20a12152fed20b3bcb8e5794d05

ArmswapV1RouterSecurity.sol 93c93a0fccfc25d07c42475c743b3c1d

Description armswap-token

Platform Ethereum / Solidity

Audit Date April 2024

ARMswap.sol 1763307074eb15ebf4e2748b31459fff

BlackList.sol 6f09071b2472ace95c39bfae19d9896d

TransferControl.sol be6966bde491355aa9b3fe88a6dd6c34

Hashlock Pty Ltd

8

Security Rating

After Hashlock’s Audit, we found the smart contracts to be “Secure”. The contracts all
follow simple logic, with correct and detailed ordering. They use a series of interfaces,
and the protocol uses a list of Open Zeppelin contracts. We initially identified some
significant vulnerabilities that have since been addressed.

The ‘Hashlocked’ rating is reserved for projects that ensure ongoing security via bug bounty programs or
on chain monitoring technology.

All issues uncovered during automated and manual analysis were meticulously reviewed

and applicable vulnerabilities are presented in the Audit Findings section.

All vulnerabilities initially identified have now been resolved and acknowledged.

Hashlock found:

1 High severity vulnerability

10 Medium severity vulnerabilities

3 Low severity vulnerabilities

2 Gas Saving

Caution: Hashlock’s audits do not guarantee a project's success or ethics, and are not

liable or responsible for security. Always conduct independent research about any

project before interacting.

Hashlock Pty Ltd

9

Intended Smart Contract Behaviours

Claimed Behaviour Actual Behaviour

ARMswap.sol

- Allows users to:

- Transfer

- Approve

- Batch Transfer

- Burn Token

- Allows admins to:

- Pause / Unpause the transfer

- Add / Remove blacklist address

- Enable token transfer

- Add / Remove user token transfer

capability

Contract achieves this

functionality with some

issues

BlackList.sol

- Periphery contract used to:

- Manage the blacklist user

Contract achieves this

functionality.

TransferControl.sol

- Periphery contract used to:

- Manage transfer allowed

Contract achieves this

functionality with some

issues

ArmswapV7Router.sol

- Allows users to:

- Create Pool

- Swap

- Allows admins to:

- Set Router Security

- Change Vault

- Extract Fees

Contract achieves this

functionality with some

issues

Hashlock Pty Ltd

10

ArmswapV6ERC20Deployer.sol

- Periphery contract used to:

- Deploy new pair

Contract achieves this

functionality.

ArmswapV6ERC20.sol

- Periphery contract used to:

- Deposit

- Withdraw

- Mint

- Burn

Contract does not achieves

this functionality.

RouterConfig.sol

- Periphery contract used to:

- Set Chain Config

- Set Fee Config

- Set Token Config

- Set Swap Config

- Set Custom Config

Contract achieves this

functionality.

ArmCallExecutor.sol

- Periphery contract used to:

- Add Caller

- Remove Caller

- Execute

Contract achieves this

functionality.

Hashlock Pty Ltd

11

Code Quality

This Audit scope involves the smart contracts of the ArmSwap, as outlined in the Audit

Scope section. All contracts, libraries and interfaces mostly follow standard best

practices and to help avoid unnecessary complexity that increases the likelihood of

exploitation, however some refactoring was required.

The code is very well commented and closely follows best practice nat-spec styling. All

comments are correctly aligned with code functionality.

Audit Resources

We were given the smart contract codes for Armswap-token and

armswap-evm-contract-main in the form of a zip file.

As mentioned above, code parts are well commented. The logic is straightforward, and

therefore it is easy to quickly comprehend the programming flow as well as the complex

code logic. The comments are helpful in understanding the overall architecture of the

protocol.

Dependencies

As per our observation, the libraries used in this smart contracts infrastructure are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

Hashlock Pty Ltd

12

Severity Definitions

Significance Description

High

High severity vulnerabilities can result in loss of funds,
asset loss, access denial, and other critical issues that
will result in the direct loss of funds and control by the
owners and community.

Medium
Medium level difficulties should be solved before
deployment, but won't result in loss of funds.

Low
Low level vulnerabilities are areas that lack best practices
that may cause small complications in the future.

Gas Gas Optimisations, issues and inefficiencies

Hashlock Pty Ltd

13

Audit Findings

High

[H-01] ARMswap#approve - Approve() can be frontrun

Description

Approve() are subject to front-run attack because the approve method overwrites the

current allowance regardless of whether the spender already used it or not. In case the

spender spends the amount, the approve() will approve a new amount.

Vulnerability Details

Approve() is subject to a known front-running attack.

function approve(address spender,uint256 value)public virtual override
whenNotPaused whenNotBlackListed(_msgSender(), spender) returns (bool) {

address owner = _msgSender();

_approve(owner, spender, value);

}

Attack Scenario

Here is a possible attack scenario:

1. Alice allows Bob to transfer of Alice's tokens () by calling the approve𝑁 𝑁 > 0
method on a Token smart contract, passing the Bob's address and as the𝑁
method arguments

2. After some time, Alice decides to change from to () the number of𝑁 𝑀 𝑀 > 0
Alice's tokens Bob is allowed to transfer, so she calls the approve method again,

this time passing the Bob's address and as the method arguments𝑀
3. Bob notices the Alice's second transaction before it was mined and quickly sends

another transaction that calls the transferFrom method to transfer Alice's𝑁
tokens somewhere

Hashlock Pty Ltd

14

4. If the Bob's transaction will be executed before the Alice's transaction, then Bob

will successfully transfer Alice's tokens and will gain an ability to transfer𝑁
another tokens𝑀

5. Before Alice noticed that something went wrong, Bob calls the transferFrom

method again, this time to transfer Alice's tokens.𝑀
So, an Alice's attempt to change the Bob's allowance from to (and)𝑁 𝑀 𝑁 > 0 𝑀 > 0
made it possible for Bob to transfer of Alice's tokens, while Alice never wanted𝑁 + 𝑀
to allow so many of her tokens to be transferred by Bob.

Impact:

Possible for a user to over spend their allowance.

Recommendation

Consider using SafeERC20 with safeIncreaseAllowance() and safeDecreaseAllowance()

Note: These two functions have been deprecated by openZeppelin so use them with

care.

Status

Resolved

Hashlock Pty Ltd

15

Medium

[M-01] ArmswapV7Router#createERC20Pool - Unhandled return value of

transferFrom could lead to potential fund loss

Description

ERC20 implementations are not always consistent. Certain implementations of

transferFrom functions might return 'false' upon failure instead of reverting. To ensure

safety, it's advisable to always check the result of transferFrom and transfer

Vulnerability Details

The createERC20Pool function does not check the return value from the transferFrom

function. The contract might lose the funds if the underlying token does not revert the

transaction.

function createERC20Pool(string memory _name,string memory _symbol, uint8
_decimals , address _underlying ,uint _liquidity,uint _dstID)external {

address newPool =
deployer.deployNewPair(_name,_symbol,_decimals,_underlying, admin,
wNATIVE,address(this));

//does not check the result

IERC20(_underlying).transferFrom(msg.sender,address(this),_liquidity);

IERC20(_underlying).approve(newPool,_liquidity);

IERC20(newPool).deposit(_liquidity,msg.sender);

emit poolCreated(address(newPool), _dstID,_name, _symbol, _decimals);

}

Impact

Potentially losing funds due to unchecked return value from the transferFrom function

Recommendation

Verify the return value of transferFrom operations.

Hashlock Pty Ltd

16

Status

Resolved

[M-02] ArmswapV6ERC20#_withdraw - Use of transfer() can result in revert

Description

The transfer() function uses a fixed amount of gas, which restricts protocols from

interacting with other contracts that require more gas to process transactions,

potentially leading to transaction failures.

Vulnerability Details

The _withdraw function uses transfer(), which could cause the transaction to fail if the

receiver smart contract consumes more than 2300 gas units.

function _withdraw(address from, uint amount, address to) internal returns
(uint) {

require(!underlyingIsMinted);

require(underlying != address(0) && underlying != address(this));

_burn(from, amount);

if (underlying==wNative){

IERC20(underlying).withdraw(amount);

payable(to).transfer(amount);

}else {

IERC20(underlying).safeTransfer(to, amount);

}

return amount;

}

Impact

The transfer() function's use of a fixed amount of gas can lead to a revert.

Recommendation

Use call() instead of transfer().

Hashlock Pty Ltd

17

Status

Resolved

Hashlock Pty Ltd

18

[M-03] ARMswap#transfer & transferFrom - whenNotPaused is not

implemented in Transfer and TransferFrom

Description

Missing the whenNotPaused modifier in Transfer() and TransferFrom() allows users to

perform the actions even when the admin has paused the contract.

Vulnerability Details

As shown in the code snippet below, the transfer() does not implement the

whenNotPaused modifier. This allows the user to transfer tokens even when the token

has been paused by the owner.

function transfer(address to,uint256 value)public virtual override
requireTokenTransferEnabled(_msgSender()) whenNotBlackListed(_msgSender(),
to) returns (bool) {

address sender = _msgSender();

_transfer(sender, to, value);

return true;

}

The following is another example that demonstrates the absence of the

whenNotPaused modifier in the transferFrom().

function transferFrom(address from,address to,uint256 value)public virtual
override requireTokenTransferEnabled(_msgSender())
whenNotBlackListed(from, to) requireNotBlackListed(_msgSender()) returns
(bool) {

address spender = _msgSender();

_spendAllowance(from, spender, value);

_transfer(from, to, value);

}

Hashlock Pty Ltd

19

Impact

Users can still execute the transfer() and transferFrom() functions even when the admin

has paused the contract.

Recommendation

Implement whenNotPaused in transfer() and transferFrom()

Status

Resolved

[M-04] ARMswap#enableTokenTransfer - Inability to disable the token transfer

after activation

Description

The contract does not have the ability to disable token transfers again after activating

them via the enableTokenTransfer().

Vulnerability Details

After the owner calls the enableTokenTransfer() from ARMSwap.sol, the contract

invokes _enableTokenTransfer() from TransferControl.sol to set the

_isTokenTransferEnabled value to true, allowing users to perform transfers. However,

the contract lacks the ability to set the _isTokenTransferEnabled value to false, which

prevents the owner from disabling token transfers after enabling it.

//From ARMSwap.sol

function enableTokenTransfer() external onlyOwner {

_enableTokenTransfer();

}

//From TransferControl.sol

function _enableTokenTransfer() internal virtual {

_isTokenTransferEnabled = true;

emit TokenTransferEnabled();

Hashlock Pty Ltd

20

}

Impact

The admin does not have the ability to disable token transfers from the user.

Recommendation

Implement a disableTokenTransfer() to set the _isTokenTransferEnabled to false.

Note

The absence of a disableTokenTransfer() function is intentional and reflects the

contract's design choice. By omitting this feature, the contract emphasizes a

commitment to continuous token transfer capabilities once enabled.

Status

Acknowledged

[M-05] ARMswapV6ERC20#withdrawVault - Centralization Risk - Enable to

withdraw user funds

Description

The withdrawVault() function allows the vault owner to pass the from address to

_withdraw(), enabling the owner to retrieve any user funds without their knowledge or

approval.

Vulnerability Details

The Vault owner can call withdrawVault() to retrieve any user funds from the from

address

function withdrawVault(address from, uint amount, address to) external
onlyVault returns (uint) {

//from address not hard coded as msg.sender. Allow vault owner to
retrieve the funds

return _withdraw(from, amount, to);

Hashlock Pty Ltd

21

}

Impact

The vault owner can retrieve any user's funds without their approval.

Recommendation

● Make the vault owner multi-sig.

Status

Resolved

[M-06] ArmswapV6ERC20#setVault - Vault address can’t be changed after

setting it to wrong address

Description

Vault address can’t be changed after setting it to wrong address

Vulnerability Details

When deploying a new pair using the “deployNewPair” function there isn’t any kind of

check on the parameters so if mistakenly the vault address has been set to “address(0)”

then there is no way to change it. If owner wants to change the vault address he can’t

do it as there is a “onlyVault” modifier on the “setVault” function and if we see the

“onlyVault” modifier which is as follow

modifier onlyVault() {

require(msg.sender == vault, "ArmswapV6ERC20: FORBIDDEN");

_;

}

So this means that only the vault can change the address but if vault is set to

address(0) he won’t be able to do it

Impact

Hashlock Pty Ltd

22

Unable to change vault address

Recommendation

Allow the owner of the vault to change the address

Note:

The vault address is indeed set when the deployNewPair function is called. The admin

address is passed as `Vault` from the ArmswapV7Router, which is initialized in the

constructor of the contract. We have a require condition in place that checks whether

the admin address is not the zero address.

Given this setup, the admin address passed to the ArmswapV7Router constructor is

already validated to ensure it's not the zero address. Therefore, there's no need for

additional checks on the parameters within the deployNewPair function.

Additionally, regarding the ability to change the vault address, if the vault is mistakenly

set to address(0), it indeed presents a problem. However, this scenario is prevented by

the initial validation of the admin address. The owner of the contract, who has control

over the admin address, can ensure that the vault address is correctly set during

deployment.

Therefore, the risk of setting the vault address to address(0) is mitigated by the

validation of the admin address, and there's no need for further checks within the

deployNewPair function.

Status

Acknowledged

[M-07] ArmswapV6ERC20#_mint - No cap on total supply

Description

There isn’t any type of check on the total supply of the token

Hashlock Pty Ltd

23

Vulnerability Details

When depositing the amount the “_mint” function calls and if we see this function then

there isn’t any type of supply cap on the amount of token that will be minted so that

the overall supply can inflate beyond bound and in the worst case scenario it can

overflow.

I understand that in the “_withdraw” function the tokens are being burned but there

should also be a max cap on the amount of tokens being minted

function _mint(address account, uint256 amount) internal {

require(account != address(0), "ERC20: mint to the zero address");

_totalSupply += amount;

balanceOf[account] += amount;

emit Transfer(address(0), account, amount);

}

Impact

Overall supply can inflate..

Recommendation

Set a max supply cap on the amount of tokens that can be minted

Status

Resolved

Hashlock Pty Ltd

24

[M-08] ArmswapV6ERC20#_mint - RemoveSupportedCaller function can be

Dos’ed

Description

RemoveSupportCaller function can be Dos’ed due to storing support callers in an array

Vulnerability Details

If we see abstract contract “RoleControl” in “ArmswapV7RouterSecurity.sol” file there is

an array in that contract which is

address[] public supportedCallers;

Now if we see “addSupportedCaller” function then every new supported caller is being

added in the array and if we see “RemoveSupportedCaller” function then we can see

that first this function is making sure that the “caller” address being removed is actually

a caller and then it is removing it from mapping by actually setting it to “false” and after

that it is looping a condition till the length of the “supportedCallers” array. Now the

issue is that if the length of the array is too Big then this function can run out of gas

cause this function is looping through every “caller” in the array and checking the

condition on it. Let's say if the desired caller is in the end of array then looping through

the whole array will cost alot of gas and will probably make this function run out of gas.

function removeSupportedCaller(address caller) external onlyAdmin {

require(isSupportedCaller[caller]);

isSupportedCaller[caller] = false;

uint256 length = supportedCallers.length;

for (uint256 i = 0; i < length; i++) {

if (supportedCallers[i] == caller) {

supportedCallers[i] = supportedCallers[length - 1];

supportedCallers.pop();

return;

}

Hashlock Pty Ltd

25

}

}

Impact

Function can be Dos’ed permanently

Recommendation

It is recommended to use only mapping instead of array

Note:

The `createERC20Pool` function deploys a new contract every time it's called.

Given that a new contract is deployed with each call, it's essential to note that the state

of the new contract, including the allowance, is initialized to zero by default.

Therefore, we don't need to explicitly set the allowance to zero before changing it, as

it's already at zero for each newly deployed contract. This means that the vulnerability

related to non-zero allowance values doesn't apply in this context.

Status

Acknowledged

[M-09] ArmswapV6ERC20#global variable - The Time Lock delay in the

contract is set to a constant value of zero.

Description

The timelock delay is set to zero in the contract. This allows users to bypass the

timelock mechanism in the setVault and setMinter functions.

Vulnerability Details

The ArmswapV6ERC20 function sets the delay to 0 days using a constant value, which

means that this value cannot be changed in the future.

uint public constant DELAY = 0 days;

Hashlock Pty Ltd

26

This value is utilised in the setVault and setMinter functions, allowing users to update

the addresses of the minter and vault without any delay.

Impact

This enables the user to keep updating the minter and vault value without any time

delay.

Recommendation

Ensure that the DELAY is set to a desired value greater than 0.

Status

Resolved

Hashlock Pty Ltd

27

Low

[L-01] ARMswap#transfer - Dust transfers are permitted

Description

A large number of dust transfers can contribute to network congestion and spam,

increasing gas fees.

Vulnerability Details

Spamming the transfer() with dust amount to increase the gas cost.

function transfer(address to,uint256 value) public virtual override
requireTokenTransferEnabled(_msgSender()) whenNotBlackListed(_msgSender(),
to) returns (bool) {

address sender = _msgSender();

_transfer(sender, to, value);

return true;

}

Impact

Potentially increase gas costs for users.

Recommendation

Enforcing a minimum transaction amount can prevent attackers from clogging the

network with zero amount or dust transactions.

Status

Resolved

Hashlock Pty Ltd

28

[L-02] AdminControl.sol#applyAdmin - Event emitting before the function

ends

Description

In the function the event “applyAdmin” is emitting before the function ends

Vulnerability Details

The function “applyAdmin” is emitting an “applyAdmin” event before the whole function

ends its executing. If due to any reason the code fails to complete and there is any

offchain mechanism that is looking for such type of events to perform some type of

function then it will wrongfully perform that function cause the event has been emitted

already. Also it is against CEI Pattern to emit event before the function ends

function applyAdmin() external {

require(msg.sender == pendingAdmin, "AdminControl: Forbidden");

emit ApplyAdmin(admin, pendingAdmin);

admin = pendingAdmin;

pendingAdmin = address(0);

}

Recommendation:

Make sure that the event is emitted after the whole calculation has been ended.

Status

Resolved

L-03] ArmswapV6ERC20.sol#_mint - Wrong event being emiited

Description

Wrong event is being emitted in several functions

Hashlock Pty Ltd

29

Vulnerability Details

In the “_mint” function we can see that “transfer” event is being emitted which is wrong

and should be emitted and “minted” event should be in the place of “transfer” event.

Also “_burn” function have same issue

function _mint(address account, uint256 amount) internal {

require(account != address(0), "ERC20: mint to the zero address");

_totalSupply += amount;

balanceOf[account] += amount;

emit Transfer(address(0), account, amount); //@audit wrong event

}

function _burn(address account, uint256 amount) internal {

require(account != address(0), "ERC20: burn from the zero
address");

uint256 balance = balanceOf[account];

require(balance >= amount, "ERC20: burn amount exceeds balance");

balanceOf[account] = balance - amount;

_totalSupply -= amount;

emit Transfer(account, address(0), amount); //@audit wrong event

}

Recommendation:

Make sure to emit the correct event.

Note:

In response to this claim, the ArmSwap team understands the concern regarding the

Hashlock Pty Ltd

30

emitted events in the `_mint` and `_burn` functions. However, it's important to note that

the `Transfer` event is standard and widely accepted within the ERC-20 token standard.

This event has been consistently used from the initial versions of ERC-20 to the newer

ones, and it is also utilized by OpenZeppelin, a widely trusted library for smart contract

development.

Therefore, we have chosen to retain the `Transfer` event in the `_mint` and `_burn`

functions for compatibility and consistency with industry standards.

Status

Acknowledged

Gas:

[G-01] ArmswapV6ERC20.sol - Checking value of constant

Description

Waste of gas due to redundant require condition

Vulnerability Details

There are functions like “_deposit” and “withdraw” that are checking the value of

constant “underlyingIsMinted” and make sure that it is not “true” but if we see that

“underlyingIsMinted” has been given constant so its value can’t be changed and has

been initialised with “false” value so these type of require statements are waste of gas

function _withdraw(address from, uint amount, address to) internal returns
(uint) {

require(!underlyingIsMinted);

require(underlying != address(0) && underlying != address(this));

function _deposit(uint amount, address to) internal returns (uint) {

require(!underlyingIsMinted);

Hashlock Pty Ltd

31

require(underlying != address(0) && underlying != address(this));

_mint(to, amount);

return amount;

}

Recommendation:

Remove these require condition to save gas.

Status

Resolved

[G-02] ArmswapV6ERC20.sol - First check Balance then proceed to save gas

Description

Gas can be saved by checking user balance first.

Vulnerability Details

In the “_withdraw” function there is a call to “_burn” function and that function is

checking if the user has the required balance to withdraw and if he doesn’t then the

function will revert. Now the issue is that this approach will cost more gas to the user.

Instead of this you can check balance in the original “_withdraw” function and if the

balance isn’t enough then the function will revert.

function _burn(address account, uint256 amount) internal {

require(account != address(0), "ERC20: burn from the zero
address");

uint256 balance = balanceOf[account];

require(balance >= amount, "ERC20: burn amount exceeds balance");

balanceOf[account] = balance - amount;

_totalSupply -= amount;

Hashlock Pty Ltd

32

}

Recommendation:

Check user balance first then proceed to burn function

Status

Resolved

Centralisation

The ArmSwap values security and utility over decentralisation.

The owner executable functions within the protocol increase security and functionality

but depend highly on internal team responsibility.

Hashlock Pty Ltd

33

Conclusion

After Hashlocks analysis, the ArmSwap seems to have a sound and well-tested code

base, now that our findings have been resolved/acknowledged in order to achieve

security. Overall, most of the code is correctly ordered and follows industry best

practices. The code is well commented on as well. To the best of our ability, Hashlock is

not able to identify any further vulnerabilities.

Hashlock Pty Ltd

34

Our Methodology

Hashlock strives to maintain a transparent working process and to make our audits a

collaborative effort. The objective of our security audits are to improve the quality of

systems and upcoming projects we review and to aim for sufficient remediation to help

protect users and project leaders. Below is the methodology we use in our security audit

process.

Manual Code Review:

In manually analysing all of the code, we seek to find any potential issues with code

logic, error handling, protocol and header parsing, cryptographic errors, and random

number generators. We also watch for areas where more defensive programming could

reduce the risk of future mistakes and speed up future audits. Although our primary

focus is on the in-scope code, we examine dependency code and behaviour when it is

relevant to a particular line of investigation.

Vulnerability Analysis:

Our methodologies include manual code analysis, user interface interaction, and

whitebox penetration testing. We consider the project's website, specifications, and

whitepaper (if available) to attain a high level understanding of what functionality the

smart contract under review contains. We then communicate with the developers and

founders to gain insight into their vision for the project. We install and deploy the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Hashlock Pty Ltd

35

Documenting Results:

We undergo a robust, transparent process for analysing potential security vulnerabilities

and seeing them through to successful remediation. When a potential issue is

discovered, we immediately create an issue entry for it in this document, even though

we have not yet verified the feasibility and impact of the issue. This process is vast

because we document our suspicions early even if they are later shown to not represent

exploitable vulnerabilities. We generally follow a process of first documenting the

suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this we analyse the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take and finally we

suggest the requirements for remediation engineering for future releases. The

mitigation and remediation recommendations should be scrutinised by the developers

and deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the contracts details are

made public.

Hashlock Pty Ltd

36

Disclaimers

Hashlock’s Disclaimer

Hashlock’s team has analysed these smart contracts in accordance with the best

industry practices at the date of this report, in relation to: cybersecurity vulnerabilities

and issues in the smart contract source code, the details of which are disclosed in this

report, (Source Code); the Source Code compilation, deployment and functionality

(performing the intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no

statements or warranties on security of the code. It also cannot be considered as a

sufficient assessment regarding the utility and safety of the code, bugfree status or any

other statements of the contract. While we have done our best in conducting the

analysis and producing this report, it is important to note that you should not rely on

this report only. We also suggest conducting a bug bounty program to confirm the high

level of security of this smart contract.

Hashlock is not responsible for the safety of any funds, and is not in any way liable for

the security of the project.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its

programming language, and other software related to the smart contract can have their

own vulnerabilities that can lead to attacks. Thus, the audit can’t guarantee explicit

security of the audited smart contracts.

Hashlock Pty Ltd

37

About Hashlock

Hashlock is an Australian based company aiming to help facilitate the successful

widespread adoption of distributed ledger technology. Our key services all have a focus

on security, as well as projects that focus on streamlined adoption in the business

sector.

Hashlock is excited to continue to grow its partnerships with developers and other web3

oriented companies to collaborate on secure innovation, helping businesses and

decentralised entities alike.

Website: hashlock.com.au
Contact: info@hashlock.com.au

Hashlock Pty Ltd

http://hashlock.com.au
mailto:info@hashlock.com.au

38

Hashlock Pty Ltd

